საქართველოს სტანდარტი წყლის ხარისხი. ჯამური ალფა აქტივობა - საგამოცდო მეთოდი კონცენტრირებული წყაროს გამოყენებით საქართველოს სტანდარტებისა და მეტროლოგიის ეროვნული სააგენტო თბილისი ### საინფორმაციო მონაცემები - 1 **შემუშავებულია** საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს სტანდარტების დეპარტამენტის მიერ - 2 დამტკიცებულია და შემოღებულია სამოქმედოდ საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს 2019 წლის 22 აგვისტოს № 47 განკარგულებით - **3 მიღებულია გარეკანის თარგმნის მეთოდით** სტანდარტიზაციის საერთაშორისო ორგანიზაციის სტანდარტი ისო 9696:2017 " წყლის ხარისხი. ჯამური ალფა აქტივობა საგამოცდო მეთოდი კონცენტრირებული წყაროს გამოყენებით" ### 4 პირველად **5 რეგისტრირებულია** საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს რეესტრში: 2019 წლის 22 აგვისტო №268-1.3-014986 დაუშვებელია წინამდებარე სტანდარტის სრული ან ნაწილობრივი კვლავწარმოება, ტირაჟირება და გავრცელება სსიპ საქართველოს სტანდარტებისა და მეტროლოგიის ეროვნული სააგენტოს ნებართვის გარეშე # INTERNATIONAL STANDARD ISO 9696 Third edition 2017-10 # Water quality — Gross alpha activity — Test method using thick source Qualité de l'eau — Activité alpha globale — Méthode d'essai par source concentrée ### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | |----------|--|--------| | Fore | eword | iv | | Intr | oduction | v | | 1 | Scone | 1 | | 2 | • | | | | | | | 3 | | 1 | | 4 | Symbols | 2 | | 5 | Principle | 2 | | 6 | | 3 | | | | 3 | | | | 4 | | 7 | | 4 | | | | 5 | | | | 5 | | | | 5 | | | | 5
6 | | | | 6 | | | | 6 | | | | 6 | | | | 6 | | | | 7 | | | 7.11 Optimization of the determination | 7 | | 8 | | 8 | | | | 8 | | | | 8 | | | 8.3 Polonium losses | 8 | | 9 | | 8 | | | | 8 | | | - The state of | 9 | | | | 9 | | | | 10 | | 10 | | | | | • | | | | | | | Ripl | 13 | | ### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 147, $Water\ quality$, Subcommittee SC 3, $Radioactivity\ measurements$. This third edition cancels and replaces the second edition (ISO 9696:2007), which has been technically revised. ## Introduction Radioactivity from several naturally occurring and anthropogenic sources is present throughout the environment. Thus, water bodies (e.g. surface waters, ground waters, sea waters) can contain radionuclides of natural, human-made or of both origins: - natural radionuclides, including ⁴⁰K, ³H, ¹⁴C, and those originating from the thorium and uranium decay series, in particular ²²⁶Ra, ²²⁸Ra, ²³⁴U, ²³⁸U, ²¹⁰Po and ²¹⁰Pb, can be found in water for natural reasons (e.g. desorption from the soil and runoff by rain water) or can be released from technological processes involving naturally occurring radioactive materials (e.g. the mining and processing of mineral sands or phosphate fertilizers production and use); - anthropogenic radionuclides, such as the transuranium elements (e.g. americium, plutonium, neptunium and curium), ³H, ¹⁴C, ⁹⁰Sr, and some gamma-emitting radionuclides can also be found in natural waters. Small quantities of these radionuclides may be discharged from nuclear fuel cycle facilities into the environment as the result of authorized routine releases. Some of these radionuclides used for medical and industrial applications may also be released into the environment after use. Anthropogenic radionuclides are also found in waters as the result of past fallout contamination resulting from the above ground detonation of nuclear devices and accidents such as those that occurred in Chernobyl and Fukushima. Radionuclide activity concentration in water bodies can vary according to local geological characteristics and climatic conditions and can be locally and temporally enhanced by releases from nuclear installation during planned, existing and emergency exposure situations^[1]. Drinking water may thus contain radionuclides at activity concentrations which could present a risk to human health. The radionuclides present in liquid effluents are usually controlled before being discharged into the environment^[2] and water bodies. Drinking water may be monitored for their radioactivity as recommended by the World Health Organization (WHO)^[3]. Such control and monitoring can enable to take proper actions to ensure that there is no adverse health effects to the public. Following these international recommendations, radionuclide authorized concentration limits for liquid effluent discharged to the environment and radionuclide guidance levels for water bodies and drinking water are usually specified by national regulations for planned, existing and emergency exposure situations. Compliance with these limits can be assessed using measurement results with their associated uncertainties as requested by ISO/IEC Guide 98-3 and ISO 5667-20. Depending on the exposure situation, the limits and guidance levels that would result in an action to reduce health risk differ. As an example, during planned or existing situation, the WHO guidance for screening levels in drinking water is 0,5 Bq·l⁻¹ for gross alpha activity and 1 Bq·l⁻¹ for gross beta activity. NOTE The guidance level is the activity concentration with an intake of $2 \cdot d^{-1}$ of drinking water for 1 year that results in an effective dose of 0,1 mSv·a⁻¹ for members of the public, an effective dose that represents a very low level of risk that is not expected to give rise to any detectable adverse health effect[3]. Thus, the test method may need to be adjusted depending if it is applied for either a planned-existing or an emergency situation since during emergency situations, a large number of samples needs to be rapidly characterized. The test methods could be adapted so that its performance in term of characteristic limits, decision threshold and detection limit, and the uncertainties ensure that the gross activity concentration test results permit the verification that they are below the guidance levels required by national authority for either planned-existing situations or an emergency situation^[5][6][7]. Usually, the test methods can be adjusted to measure the gross activity concentration of the radionuclide(s) in either wastewaters before storage or in liquid effluents before being discharged to the environment. The test results will enable the plant/installation operator to comply with national regulations in verifying that before their discharge, wastewaters/liquid effluent radioactive activity concentrations are lower than the authorized limits. #### ISO 9696:2017(E) The test method(s) described in this document may be used during planned, existing and emergency exposure situations, as well as for wastewaters and liquid effluents with specific modifications that could increase the overall uncertainty, detection limit and threshold. The test method(s) may be used for water samples after proper sampling, sample handling and test sample preparation (see the ad hoc part of ISO 5667). An international standard on a test method of gross alpha and gross beta activity concentrations in water samples is justified for test laboratories carrying out these measurements and may be required by national authorities, as laboratories may have to obtain a specific accreditation for radionuclide measurement of drinking water samples. This document is one of a set of International Standards on test methods dealing with the measurement of the activity concentration of radionuclides in water samples.