ᲡᲐᲥᲐᲠᲗᲕᲔᲚᲝᲡ ᲔᲠᲝᲕᲜᲣᲚᲘ ᲡᲢᲐᲜᲓᲐᲠᲢᲘ

ᲔᲕᲠᲝᲙᲝᲦᲘ 5: ᲮᲘᲡ ᲙᲝᲜᲡᲢᲠᲣᲥᲪᲘᲔᲑᲘᲡ ᲦᲐᲞᲠᲝᲔᲥᲢᲔᲑᲐ. ᲜᲐᲬᲘᲚᲘ 2: ᲮᲘᲦᲔᲑᲘ

საქართველოს სგანღარგების, გექნიკური რეგლამენგების ღა მეგროლოგიის ეროვნული სააგენგო ᲗᲑᲘᲚᲘᲡᲘ

ᲡᲐᲘᲜᲤᲝᲠᲛᲐᲪᲘᲝ ᲛᲝᲜᲐᲪᲔᲛᲔᲑᲘ

- 1 შემშშამებშლეა საქართველოს ს_ტანდარ_ტების, _ტექნიკური რეგლამენ_ტების და მეტროლოგიის ეროვნული სააგენ_ტოს ს_ტანდარ_ტებისა და ტექნიკური რეგლამენ_ტების დეპარ_ტამენ_ტის მიერ
- 3 მიღებულია გარეკანის მეთოღით ს_ტანღარ_ტიმაციის საერთაშორისო ორგანიმაციის ს_ტანღარ_ტი მსᲝ მნ 1995-2 : 2004 "**ევროკოღი 5:** ხის კონს_ტრუქციების ღაპროექ_ტება. ნაწილი 2: ხიღები"

4 30ᲠᲕᲔᲚᲐᲦ

5 რმბისტრირმბშლია საქართველოს სტანღარტების, ტექნიკური რეგლამენტების ღა მეტროლოგიის ეროვნული სააგენტოს რეესტრში: 2009 წლის 15 მაისი \mathbb{N}^2 268-1.3-2459

წინამღებარე სგანღარგის სრული ან ნაწილობრივი აღწარმოება, გირაჟირება ღა გავრცელება საქართველოს სგანღარგების, გექნიკური რეგლამენგების ღა მეგროლოგიის ეროვნული სააგენგოს ნებართვის გარეშე არ ღაიშვება

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 1995-2

November 2004

ICS 91.010.30; 91.080.20; 93.040

Supersedes ENV 1995-2:1997

English version

Eurocode 5: Design of timber structures - Part 2: Bridges

Eurocode 5: Conception et calcul des structures bois -Partie 2: Ponts Eurocode 5: Bemessung und Konstruktion von Holzbauten
- Teil 2: Brücken

This European Standard was approved by CEN on 26 August 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Contents

_		_
Forewo		3
	n 1 General	6
	Scope	6
	1 Scope of EN 1990	6
1.1.		6
1.2	Normative references	6
1.3 A	Assumptions	7
1.4	Distinction between principles and application rules	7
	Definitions	7
1.5.	1 General	7
1.5.	2 Additional terms and definitions used in this present standard	7
	Symbols used in EN 1995-2	9
	n 2 Basis of design	11
	Basic requirements	11
	Principles of limit state design	11
	Basic variables	11
2.3.		11
_	Verification by the partial factor method	11
	Design value of material property	11
	n 3 Material properties	13
	1.4 Durability	14
	Timber	14
		14
	Resistance to corrosion	
	Protection of timber decks from water by sealing	14
	n 5 Basis of structural analysis	15
	Laminated deck plates	15
5.1.		15
	2 Concentrated vertical loads	15
	3 Simplified analysis	16
	Composite members	17
	Timber-concrete composite members	17
	n 6 Ultimate limit states	18
	Deck plates	18
	1 System strength	18
	2 Stress-laminated deck plates	19
	Fatigue	21
	n 7 Serviceability limit states	22
	General	22
	Limiting values for deflections	22
7.3 \	Vibrations	22
7.3.	1 Vibrations caused by pedestrians	22
7.3.	2 Vibrations caused by wind	22
Section	n 8 Connections	23
8.1 (General	23
8.2	Timber-concrete connections in composite beams	23
	1 Laterally loaded dowel-type fasteners	23
8.2.		23
	n 9 Structural detailing and control	24
	A (informative) Fatigue verification	25
	General	25
	Fatigue loading	25
	Fatigue verification	26
	B (informative) Vibrations caused by pedestrians	28
	General	28
	Vertical vibrations	28
	Horizontal vibrations	28

Foreword

This European Standard EN 1995-2 has been prepared by Technical Committee CEN/TC250 "Structural Eurocodes", the Secretariat of which is held by BSI.

This European Standard shall be given the status of a National Standard, either by publication of an identical text or by endorsement, at the latest by May 2005, and conflicting national standards shall be withdrawn at the latest by March 2010.

This European Standard supersedes ENV 1995-2:1997.

CEN/TC250 is responsible for all Structural Eurocodes.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxemburg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Background of the Eurocode programme

In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonisation of technical specifications.

Within this action programme, the Commission took the initiative to establish a set of harmonised technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.

For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980s.

In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links de facto the Eurocodes with the provisions of all the Council's Directives and/or Commission's Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products – CPD – and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).

The Structural Eurocode programme comprises the following standards, generally consisting of a number of Parts:

EN 1990:2002	Eurocode: Basis of Structural Design
EN 1991	Eurocode 1: Actions on structures
EN 1992	Eurocode 2: Design of concrete structures
EN 1993	Eurocode 3: Design of steel structures
EN 1994	Eurocode 4: Design of composite steel and concrete structures
EN 1995	Eurocode 5: Design of timber structures
EN 1996	Eurocode 6: Design of masonry structures
EN 1997	Eurocode 7: Geotechnical design

¹ Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).

EN 1998 Eurocode 8: Design of structures for earthquake resistance

EN 1999 Eurocode 9: Design of aluminium structures

Eurocode standards recognise the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.

Status and field of application of Eurocodes

The Member States of the EU and EFTA recognise that Eurocodes serve as reference documents for the following purposes:

- as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire;
- as a basis for specifying contracts for construction works and related engineering services;
- as a framework for drawing up harmonised technical specifications for construction products (ENs and ETAs)

The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents² referred to in Article 12 of the CPD, although they are of a different nature from harmonised product standards³. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.

The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.

National Standards implementing Eurocodes

The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National annex.

The National annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, i.e.:

- values and/or classes where alternatives are given in the Eurocode;
- values to be used where a symbol only is given in the Eurocode;
- country specific data (geographical, climatic, etc.), e.g. snow map;
- the procedure to be used where alternative procedures are given in the Eurocode;

methods of calculation and of proof, technical rules for project design, etc.; serve as a reference for the establishment of harmonised standards and guidelines for European technical approvals.

The Eurocodes, *de facto*, play a similar role in the field of the ER 1 and a part of ER 2.

² According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs.

³ According to Art. 40 of the CRD in the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs.

³ According to Art. 12 of the CPD the interpretative documents shall: give concrete form to the essential requirements by harmonising the terminology and the technical bases and indicating classes or levels for each requirement where necessary; indicate methods of correlating these classes or levels of requirement with the technical specifications, *e.g.*

- decisions on the application of informative annexes;
- references to non-contradictory complementary information to assist the user to apply the Eurocode.

Links between Eurocodes and harmonised technical specifications (ENs and ETAs) for products

There is a need for consistency between the harmonised technical specifications for construction products and the technical rules for works⁴. Furthermore, all the information accompanying the CE Marking of the construction products which refer to Eurocodes shall clearly mention which Nationally Determined Parameters have been taken into account.

Additional information specific to EN 1995-2

EN 1995 describes the Principles and requirements for safety, serviceability and durability of timber bridges. It is based on the limit state concept used in conjunction with a partial factor method.

For the design of new structures, EN 1995-2 is intended to be used, for direct application, together with EN 1995-1-1 and EN1990:2002 and relevant Parts of EN 1991.

Numerical values for partial factors and other reliability parameters are recommended as basic values that provide an acceptable level of reliability. They have been selected assuming that an appropriate level of workmanship and of quality management applies. When EN 1995-2 is used as a base document by other CEN/TCs the same values need to be taken.

National annex for EN 1995-2

This standard gives alternative procedures, values and recommendations with notes indicating where national choices may have to be made. Therefore the National Standard implementing EN 1995-2 should have a National annex containing all Nationally Determined Parameters to be used for the design of bridges to be constructed in the relevant country.

National choice is allowed in EN 1995-2 through clauses:

2.3.1.2(1) Load-duration assignment

2.4.1 Partial factors for material properties

7.2 Limiting values for deflection

7.3.1(2) Damping ratios

 4 see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.