ᲡᲐᲥᲐᲠᲗᲕᲔᲚᲝᲡ ᲔᲠᲝᲕᲜᲣᲚᲘ ᲡᲢᲐᲜᲓᲐᲠᲢᲘ

ᲔᲕᲠᲝᲙᲝᲦᲘ 1: ᲒᲔᲛᲝᲥᲛᲔᲦᲔᲑᲐ ᲙᲝᲜᲡᲢᲠᲣᲥᲪᲘᲔᲑᲒᲔ. ᲜᲐᲬᲘᲚᲘ 1-4: ᲒᲝᲒᲐᲦᲘ ᲛᲝᲥᲛᲔᲦᲔᲑᲔᲑᲘ - ᲥᲐᲠᲘᲡ ᲒᲔᲛᲝᲥᲛᲔᲦᲔᲑᲐ

საქართველოს სგანღარგების, გექნიკური რეგლამენგების და მეგროლოგიის ეროვნული სააგენგო Თბ0Ლ0Ს0

ᲡᲐᲘᲜᲤᲝᲠᲛᲐᲪᲘᲝ ᲛᲝᲜᲐᲪᲔᲛᲔᲑᲘ

- 1 შემშშამებშლეა საქართველოს ს_ტანდარტების, ტექნიკური რეგლამენტების და მეტროლოგიის ეროვნული სააგენტოს სტანდარტებისა და ტექნიკური რეგლამენტების დეპარტამენტის მიერ
- 3 მიღებულია გარეკანის მეთოდით ს_ტანდარ_ტიმაციის საერთაშორისო ორგანიმაციის ს_ტანდარ_ტი მსᲝ მნ 1991-1-4 : 2005 "**ევროკოდი 1:** ზემოქმედება კონსტრუქციებზე. ნაწილი 1-4: ზოგადი მოქმედებები ქარის ზემოქმედება"

5 რმბ0სტრ0რმბშლმა საქართველოს ს_ტანღარტების, ტექნიკური რეგლამენტების ღა მეტროლოგიის ეროვნული სააგენტოს რეესტრში: 2009 წლის 15 მაისი № 268-1.3-2424

წინამღებარე სგანღარგის სრული ან ნაწილობრივი აღწარმოება, გირაჟირება და გავრცელება საქართველოს სგანღარგების, გექნიკური რეგლამენგების და მეგროლოგიის ეროვნული სააგენგოს ნებართვის გარეშე არ დაიშვება

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 1991-1-4

April 2005

ICS 91.010.30

Supersedes ENV 1991-2-4:1995

English version

Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions

Eurocode 1: - Actions sur les structures - Partie 1-4: Actions générales - Actions du vent Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-4: Allgemeine Einwirkungen - Windlasten

This European Standard was approved by CEN on 4 June 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Conter	Page	
Section 1		9
	ormative references	10
	ssumptions	10
	istinction between Principles and Application Rules	10
	esign assisted by testing and measurements	10
	efinitions	10
1.7 S	ymbols	11
Section 2	Design situations	16
Section 3	Modelling of wind actions	17
	ature	17
	epresentations of wind actions	17
	assification of wind actions	17
-	haracteristic values	17
3.5 M	odels	17
	Wind velocity and velocity pressure	18
	asis for calculation	18
	asic values	18
	ean wind	19
	Variation with height	19 19
	Terrain roughness Terrain orography	21
	Large and considerably higher neighbouring structures	21
	Closely spaced buildings and obstacles	22
	ind turbulence	22
	eak velocity pressure	22
Section 5	Wind actions	24
5.1 G		24
	ind pressure on surfaces	24
5.3 W	ind forces	25
Section 6	5 4	28
6.1 G		28
	etermination of c _S c _d	28
	etailed procedure	28
	Structural factor $c_s c_d$	28 30
	Serviceability assessments Wake buffeting	30
	-	
Section 7 7.1 G		31 31
7.1.1		31
	Asymmetric and counteracting pressures and forces	32
	Effects of ice and snow	32
7.2 Pi	33	
7.2.1		33
	Vertical walls of rectangular plan buildings	34
7.2.3	Flat roofs	37
	Monopitch roofs	40
	Duopitch roofs	43
	Hipped roofs	47
	Multispan roofs	48
7.2.8	Vaulted roofs and domes	50

7.2.9 Internal pressure	51
7.2.10 Pressure on walls or roofs with more than one skin	53
7.3 Canopy roofs	54
7.4 Free-standing walls, parapets, fences and signboards	61
7.4.1 Free-standing walls and parapets	61
7.4.2 Shelter factors for walls and fences	63 63
7.4.3 Signboards 7.5 Friction coefficients	64
7.5 Friction coefficients 7.6 Structural elements with rectangular sections	65
7.7 Structural elements with sharp edged section	67
7.8 Structural elements with regular polygonal section	67
7.9 Circular cylinders	69
7.9.1 External pressure coefficients	69
7.9.2 Force coefficients	71
7.9.3 Force coefficients for vertical cylinders in a row arrangement	74
7.10 Spheres	74
7.11 Lattice structures and scaffoldings	76
7.12 Flags	78
7.13 Effective slenderness λ and end-effect factor ψ_{λ}	80
Section 8 Wind actions on bridges	82
8.1 General	82
8.2 Choice of the response calculation procedure	85
8.3 Force coefficients	85
8.3.1 Force coefficients in x-direction (general method)	85
8.3.2 Force in x-direction – Simplified Method	88
8.3.3 Wind forces on bridge decks in z-direction	89
8.3.4 Wind forces on bridge decks in y-direction	90 91
8.4 Bridge piers 8.4.1 Wind directions and design situations	91
8.4.2 Wind effects on piers	91
·	
Annex A (informative) Terrain effects	92
A.1 Illustrations of the upper roughness of each terrain category	92 93
A.2 Transition between roughness categories 0, I, II, III and IV A.3 Numerical calculation of orography coefficients	93 95
A.4 Neighbouring structures	100
A.5 Displacement height	101
Annex B (informative) Procedure 1 for determining the structural factor c _s c _d	102
B.1 Wind turbulence	102
B.2 Structural factor B.3 Number of loads for dynamic response	103 105
B.4 Service displacement and accelerations for serviceability assessments of a	103
vertical structure	105
Annex C (informative) Procedure 2 for determining the structural factor $c_s c_d$	108
C.1 Wind turbulence	108
C.2 Structural factor C.3 Number of loads for dynamic response	108 109
C.4 Service displacement and accelerations for serviceability assessments	109
Annex D (informative) $c_s c_d$ values for different types of structures	111
Annex E (informative) Vortex shedding and aeroelastic instabilities	114
E.1 Vortex shedding	114
E.1.1 General	114
E.1.2 Criteria for vortex shedding	114
E.1.3 Basic parameters for vortex shedding	115
E.1.4 Vortex shedding action	118
E.1.5 Calculation of the cross wind amplitude	118
E.1.6 Measures against vortex induced vibrations	128 129
E.2 Galloping E.2.1 General	129
E.E. I Udildiai	143

E.2.2 Onset wind velocity	129			
E.2.3 Classical galloping of coupled cylinders	131			
E.3 Interference galloping of two or more free standing cylinders				
E.4 Divergence and Flutter				
E.4.1 General	134			
E.4.2 Criteria for plate-like structures	134			
E.4.3 Divergency velocity	134			
Annex F (informative) Dynamic characteristics of structures	136			
F.1 General				
F.2 Fundamental frequency	136			
F.3 Fundamental mode shape				
F.4 Equivalent mass	143			
F.5 Logarithmic decrement of damping				
Bibliography	146			

Foreword

This document EN 1991-1-4:2005 has been prepared by Technical Committee CEN/TC250 "Structural Eurocode", the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2005, and conflicting national standards shall be withdrawn at the latest by March 2010.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

This European Standard supersedes ENV 1991-2-4: 1995.

CEN/TC 250 is responsible for all Structural Eurocodes.

Background of the Eurocode programme

In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonisation of technical specifications.

Within this action programme, the Commission took the initiative to establish a set of harmonised technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.

For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980s.

In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to the CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links *de facto* the Eurocodes with the provisions of all the Council's Directives and/or Commission's Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).

The Structural Eurocode programme comprises the following standards generally consisting of a number of Parts :

EN 1990	Eurocode :	Basis of Structural Design
EN 1991	Eurocode 1:	Actions on structures
EN 1992	Eurocode 2:	Design of concrete structures
EN 1993	Eurocode 3:	Design of steel structures

Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).

EN 1991-1-4:2005 (E)

EN 1994	Eurocode 4:	Design of composite steel and concrete structures
EN 1995	Eurocode 5:	Design of timber structures
EN 1996	Eurocode 6:	Design of masonry structures
EN 1997	Eurocode 7:	Geotechnical design
EN 1998	Eurocode 8:	Design of structures for earthquake resistance
EN 1999	Eurocode 9:	Design of aluminium structures

Eurocode standards recognise the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.

Status and field of application of Eurocodes

The Member States of the EU and EFTA recognise that Eurocodes serve as reference documents for the following purposes :

- as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 –Safety in case of fire;
- as a basis for specifying contracts for construction works and related engineering services;
- as a framework for drawing up harmonised technical specifications for construction products (ENs and ETAs)

The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents² referred to in Article 12 of the CPD, although they are of a different nature from harmonised product standards³. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.

The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.

The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.

² According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs.

³ According to Art. 12 of the CPD the interpretative documents shall:

a) give concrete form to the essential requirements by harmonising the terminology and the technical bases and indicating classes or levels for each requirement where necessary;

b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of calculation and of proof, technical rules for project design, etc.;

c) serve as a reference for the establishment of harmonised standards and guidelines for European technical approvals.

National Standards implementing Eurocodes

The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National annex.

The National annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, *i.e.*:

- values and/or classes where alternatives are given in the Eurocode,
- values to be used where a symbol only is given in the Eurocode,
- country specific data (geographical, climatic, etc.), e.g. wind map,
- the procedure to be used where alternative procedures are given in the Eurocode.

It may also contain

- decisions on the use of informative annexes, and
- references to non-contradictory complementary information to assist the user to apply the Eurocode.

Links between Eurocodes and harmonised technical specifications (ENs and ETAs) for products

There is a need for consistency between the harmonised technical specifications for construction products and the technical rules for works⁴. Furthermore, all the information accompanying the CE Marking of the construction products which refer to Eurocodes should clearly mention which Nationally Determined Parameters have been taken into account.

Additional information specific for EN 1991-1-4

EN 1991-1-4 gives design guidance and actions for the structural design of buildings and civil engineering works for wind.

EN 1991-1-4 is intended for the use by clients, designers, contractors and relevant authorities.

EN 1991-1-4 is intended to be used with EN 1990, the other Parts of EN 1991 and EN 1992-1999 for the design of structures.

National annex for EN 1991-1-4

This standard gives alternative procedures, values and recommendations for classes with notes indicating where National choice may be made. Therefore the National Standard implementing EN 1991-1-4 should have a National Annex containing Nationally Determined Parameters to be used for the design of buildings and civil engineering works to be constructed in the relevant country.

National choice is allowed for EN 1991-1-4 through clauses:

1.1 (11) Note 1 1.5 (2)

 $^{^4}$ see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.

4.1 (1) 4.2 (1)P Note 2 4.2 (2)P Notes 1, 2, 3 and 5 4.3.1 (1) Notes 1 and 2 4.3.2 (1) 4.3.2 (2) 4.3.3 (1) 4.3.4 (1) 4.3.5 (1) 4.4 (1) Note 2 4.5 (1) Notes 1 and 2 5.3 (5) 6.1 (1) 6.3.1 (1) Note 3 6.3.2 (1) 7.1.2 (2) 7.1.3 (1) 7.2.1 (1) Note 2 7.2.2 (1) 7.2.2 (2) Note 1 7.2.8 (1) 7.2.9 (2) 7.2.10 (3) Notes 1 and 2 7.4.1 (1) 7.4.3 (2) 7.6 (1) Note 1 7.7 (1) Note 1 7.8 (1) 7.10 (1) Note 1 7.11 (1) Note 2 7.13 (1) 7.13 (2) 8.1 (1) Notes 1 and 2 8.1 (4) 8.1 (5) 8.2 (1) Note 1 8.3 (1) 8.3.1 (2) 8.3.2 (1) 8.3.3 (1) Note 1 8.3.4 (1) 8.4.2 (1) Notes 1 and 2 A.2 (1) E.1.3.3 (1) E.1.5.1 (1) Notes 1 and 2 E.1.5.1 (3) E.1.5.2.6 (1) Note 1 E.1.5.3 (2) Note 1 E.1.5.3 (4) E.1.5.3 (6)

E.3 (2)