საქართველოს სტანდარტი

მანქანა-დანადგარების უსაფრთხოება - დამცავი მექანიზმების პოზიციონირება ადამიანის მიახლოების სიჩქარის გათვალისწინებით (ისო 13855:2010)

საქართველოს სტანდარტებისა და მეტროლოგიის ეროვნული სააგენტო თბილისი

სსტ ენ ისო 13855:2010/2019

საინფორმაციო მონაცემები

- 1 **შემუშავებულია** საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს სტანდარტების დეპარტამენტის მიერ
- 2 დამტკიცებულია და შემოღებულია სამოქმედოდ საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს 2019 წლის 6 დეკემბრის № 98 განკარგულებით
- **3 მიღებულია გარეკანის თარგმნის მეთოდით** სტანდარტიზაციის ევროპული კომიტეტის სტანდარტი ენ ისო 13855:2010 "მანქანა-დანადგარების უსაფრთხოება დამცავი მექანიზმების პოზიციონირება ადამიანის მიახლოების სიჩქარის გათვალისწინებით (ისო 13855:2010)"

4 პირველად

5 რეგისტრირებულია საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს რეესტრში: 2019 წლის 6 დეკემბერი №268-1.3-016556

დაუშვებელია წინამდებარე სტანდარტის სრული ან ნაწილობრივი კვლავწარმოება, ტირაჟირება და გავრცელება სსიპ საქართველოს სტანდარტებისა და მეტროლოგიის ეროვნული სააგენტოს ნებართვის გარეშე

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 13855

May 2010

ICS 13.110

Supersedes EN 999:1998+A1:2008

English Version

Safety of machinery - Positioning of safeguards with respect to the approach speeds of parts of the human body (ISO 13855:2010)

Sécurité des machines - Positionnement des moyens de protection par rapport à la vitesse d'approche des parties du corps (ISO 13855:2010)

Sicherheit von Maschinen - Anordnung von Schutzeinrichtungen im Hinblick auf Annäherungsgeschwindigkeiten von Körperteilen (ISO 13855:2010)

This European Standard was approved by CEN on 22 April 2010.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents	Page
Foreword	
•	n this International Standard and the Essential

Foreword

This document (EN ISO 13855:2010) has been prepared by Technical Committee ISO/TC 199 "Safety of machinery" in collaboration with Technical Committee CEN/TC 114 "Safety of machinery" the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by November 2010, and conflicting national standards shall be withdrawn at the latest by November 2010.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 999:1998+A1:2008.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive.

For relationship with EU Directive, see informative Annex ZA, which is an integral part of this document.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of ISO 13855:2010 has been approved by CEN as a EN ISO 13855:2010 without any modification.

Annex ZA (informative)

Relationship between this International Standard and the Essential Requirements of EU Directive 2006/42/EC

This International Standard has been prepared under a mandate given to CEN by the European Commission the European Free Trade Association to provide one means of conforming to Essential Requirements of the New Approach Directive 2006/42/EC.

Once this standard is cited in the Official Journal of the European Union under that Directive and has been implemented as a national standard in at least one Member State, compliance with the normative clauses of this standard confers, within the limits of the scope of this standard, a presumption of conformity with the relevant Essential Requirements of that Directive and associated EFTA regulations.

WARNING: Other requirements and other EU Directives may be applicable to the products falling within the scope of this standard.

INTERNATIONAL STANDARD

ISO 13855

Second edition 2010-05-01

Safety of machinery — Positioning of safeguards with respect to the approach speeds of parts of the human body

Sécurité des machines — Positionnement des moyens de protection par rapport à la vitesse d'approche des parties du corps

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Page

Contents

Forewordiv Introduction......v Scope......1 1 2 Normative references 2 3 Terms, definitions, symbols and abbreviated terms2 3.1 3.2 Symbols and abbreviated terms4 4 Methodology5 5 General equation for the calculation of the overall system stopping performance and minimum distances7 5.1 Overall system stopping performance......7 5.2 Minimum distance8 6 Calculation of minimum distances for electro-sensitive protective equipment employing active opto-electronic protective systems......8 6.1 6.2 Detection zone orthogonal to the direction of approach9 Detection zone parallel to the direction of approach12 6.3 6.4 Detection zone angled to the direction of approach14 6.5 Addressing possible circumventing of electro-sensitive protective equipment by reaching over the detection zone16 6.6 Indirect approach — Path from detection zone to hazard zone restricted by obstacles......19 7 Method of calculating the positioning of pressure-sensitive mats or floors21 7.1 7.2 8 Two-hand control devices22 9 Interlocking guards without guard locking......22 Annex A (informative) Worked examples24 Annex C (informative) Example for considering indirect approaches34 Annex D (informative) Measurement and calculation of overall system stopping performance36 Annex E (informative) Number of beams and their height above the reference plane......38 Bibliography......39

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13855 was prepared by Technical Committee ISO/TC 199, Safety of machinery.

This second edition cancels and replaces the first edition (ISO 13855:2002), which has been technically revised.

Introduction

The structure of safety standards in the field of machinery is as follows:

- a) type-A standards (basic safety standards) giving basic concepts, principles for design, and general aspects that can be applied to all machinery;
- b) type-B standards (generic safety standards) dealing with one safety aspect or one or more type(s) of safeguard that can be used across a wide range of machinery:
 - type-B1 standards on particular safety aspects (e.g. safety distances, surface temperature, noise);
 - type-B2 standards on safeguards (e.g. two-hand controls, interlocking devices, pressure-sensitive devices, guards);
- c) type-C standards (machine safety standards) dealing with detailed safety requirements for a particular machine or group of machines.

This document is a type-B standard as stated in ISO 12100-1.

The requirements of this document can be supplemented or modified by a type-C standard.

For machines which are covered by the scope of a type-C standard and which have been designed and built according to the requirements of that type-C standard, the following applies: if the requirements of that type-C standard deviate from the requirements in type-B standards, the requirements of that type-C standard take precedence over the provisions of other standards.

The effectiveness of certain types of safeguard described in this International Standard to minimize risk relies, in part, on the relevant parts of that equipment being correctly positioned in relation to the hazard zone. In deciding on these positions, a number of aspects are taken into account, such as:

- the necessity of a risk assessment according to ISO 14121-1;
- the practical experience in the use of the machine;
- the overall system stopping performance;
- the time taken to ensure the safe condition of the machine following operation of the safeguard, for example to stop the machine;
- the bio-mechanical and anthropometric data;
- any intrusion by a part of the body towards the hazard zone until the protective device is actuated;
- the path taken by the body part when moving from the detection zone towards the hazard zone;
- the possible presence of a person between the safeguard and the hazard zone;
- the possibility of undetected access to the hazard zone.