საქართველოს ეროვნული სტანდარტი გაზომვების მეთოდების და შედეგების სიზუსტე (სისწორე და პრეციზიულობა) ნაწილი 1: ძირითადი პრინციპები და დეფინიციები > საქართველოს სტანდარტების, ტექნიკური რეგლამენტების და მეტროლოგიის ეროვნული სააგენტო თბილისი სსტ ისო 5725-1 : 2006 ## საინფორმაციო მონაცემები 1 შემუშავებულია საქართველოს სტანდარტების, ტექნიკური რეგლამენტების და მეტროლოგიის ეროვნული სააგენტოს სტანდარტებისა და ტექნიკური რეგლამენტების დეპარტამენტის მიერ 2 დამტკიცებულია და შემოღებულია სამოქმედოდ საქართველოს სტანდარტების, ტექნიკური რეგლამენტების და მეტროლოგიის ეროვნული სააგენტოს 2006 წლის 1 ნოემბრის #63 განკარგულებით 3 მიღებულია გარეკანის მეთოდით სტანდარტიზაციის საერთაშორისო ორგანიზაციის სტანდარტი ისო 5725-1:1994 "გაზომვების მეთოდების და შედეგების სიზუსტე (სისწორე და პრეციზიულობა) ნაწილი 1: მირითადი პრინციპები და დეფინიციები" ## 4 პირველად **5 რეგისტრირებულია** საქართველოს სტანდარტების, ტექნიკური რეგლამენტების და მეტროლოგიის ეროვნული სააგენტოს რეესტრში: 2006 წლის 25 ოქტომბრის #268-1.3-0097 წინამდებარე სტანდარტის სრული ან ნაწილობრივი აღწარმოება, ტირაჟირება და გავრცელება საქართველოს სტანდარტების, ტექნიკური რეგლამენტების და მეტროლოგიის ეროვნული სააგენტოს ნებართვის გარეშე არ დაიშვება # INTERNATIONAL STANDARD ISO 5725-1 > First edition 1994-12-15 # Accuracy (trueness and precision) of measurement methods and results — # Part 1: General principles and definitions Exactitude (justesse et fidélité) des résultats et méthodes de mesure — Partie 1: Principes généraux et définitions # **Contents** | | Pa | ige | |-----|--|-----| | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Definitions | 2 | | 4 | Practical implications of the definitions for accuracy experiments | 4 | | 4.1 | Standard measurement method | 4 | | 4.2 | Accuracy experiment | 4 | | 4.3 | Identical test items | 5 | | 4.4 | Short intervals of time | 5 | | 4.5 | Participating laboratories | 5 | | 4.6 | Observation conditions | 5 | | 5 | Statistical model | 6 | | 5.1 | Basic model | 6 | | 5.2 | Relationship between the basic model and the precision | 7 | | 5.3 | Alternative models | 7 | | 6 | Experimental design considerations when estimating accuracy | 7 | | 6.1 | Planning of an accuracy experiment | 7 | | 6.2 | Standard measurement method | 8 | | 6.3 | Selection of laboratories for the accuracy experiment | 8 | | 6.4 | Selection of materials to be used for an accuracy experiment | 10 | | 7 | Utilization of accuracy data | 11 | | 7.1 | Publication of trueness and precision values | 11 | | 7.2 | Practical applications of trueness and precision values | 12 | | Ann | nexes | | | Δ | Symbols and abbreviations used in ISO 5725 | 13 | All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland [©] ISO 1994 | В | Charts of uncertainties for precision measures | | | | |---|--|--|-------|----| | С | Bibliography | | ••••• | 17 | ### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 5725-1 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods, Subcommittee SC 6, Measurement methods and results. ISO 5725 consists of the following parts, under the general title *Accuracy* (trueness and precision) of measurement methods and results: - Part 1: General principles and definitions - Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - Part 3: Intermediate measures of the precision of a standard measurement method - Part 4: Basic methods for the determination of the trueness of a standard measurement method - Part 5: Alternative methods for the determination of the precision of a standard measurement method - Part 6: Use in practice of accuracy values Parts 1 to 6 of ISO 5725 together cancel and replace ISO 5725:1986, which has been extended to cover trueness (in addition to precision) and intermediate precision conditions (in addition to repeatability and reproducibility conditions). Annexes A and B form an integral part of this part of ISO 5725. Annex C is for information only. #### Introduction - **0.1** ISO 5725 uses two terms "trueness" and "precision" to describe the accuracy of a measurement method. "Trueness" refers to the closeness of agreement between the arithmetic mean of a large number of test results and the true or accepted reference value. "Precision" refers to the closeness of agreement between test results. - **0.2** The need to consider "precision" arises because tests performed on presumably identical materials in presumably identical circumstances do not, in general, yield identical results. This is attributed to unavoidable random errors inherent in every measurement procedure; the factors that influence the outcome of a measurement cannot all be completely controlled. In the practical interpretation of measurement data, this variability has to be taken into account. For instance, the difference between a test result and some specified value may be within the scope of unavoidable random errors, in which case a real deviation from such a specified value has not been established. Similarly, comparing test results from two batches of material will not indicate a fundamental quality difference if the difference between them can be attributed to the inherent variation in the measurement procedure. - **0.3** Many different factors (apart from variations between supposedly identical specimens) may contribute to the variability of results from a measurement method, including: - a) the operator; - b) the equipment used; - c) the calibration of the equipment; - d) the environment (temperature, humidity, air pollution, etc.); - e) the time elapsed between measurements. The variability between measurements performed by different operators and/or with different equipment will usually be greater than the variability between measurements carried out within a short interval of time by a single operator using the same equipment. **0.4** The general term for variability between repeated measurements is precision. Two conditions of precision, termed repeatability and reproducibility conditions, have been found necessary and, for many practical cases, useful for describing the variability of a measurement method. Under repeatability conditions, factors a) to e) listed above are considered constants and do not contribute to the variability, while under reproducibility conditions they vary and do contribute to the variability of the test results. Thus repeatability and reproducibility are the two extremes of precision, the first describing the minimum and the second the maximum variability in results. Other intermediate conditions between these two extreme conditions of precision are also conceivable, when one or more of factors a) to e) are allowed to vary, and are used in certain specified circumstances. Precision is normally expressed in terms of standard deviations. - **0.5** The "trueness" of a measurement method is of interest when it is possible to conceive of a true value for the property being measured. Although, for some measurement methods, the true value cannot be known exactly, it may be possible to have an accepted reference value for the property being measured; for example, if suitable reference materials are available, or if the accepted reference value can be established by reference to another measurement method or by preparation of a known sample. The trueness of the measurement method can be investigated by comparing the accepted reference value with the level of the results given by the measurement method. Trueness is normally expressed in terms of bias. Bias can arise, for example, in chemical analysis if the measurement method fails to extract all of an element, or if the presence of one element interferes with the determination of another. - **0.6** The general term accuracy is used in ISO 5725 to refer to both trueness and precision. The term accuracy was at one time used to cover only the one component now named trueness, but it became clear that to many persons it should imply the total displacement of a result from a reference value, due to random as well as systematic effects. The term bias has been in use for statistical matters for a very long time, but because it caused certain philosophical objections among members of some professions (such as medical and legal practitioners), the positive aspect has been emphasized by the invention of the term trueness.