საქართველოს სტანდარტი

აკუსტიკა - ხმის ენერგიის დონის განსაზღვრა ხმაურის წყაროების გამოყენებით - სიზუსტის მეთოდი რევებერაციის საგამოცდო ოთახებისათვის (ისო 3741:2010)

საქართველოს სტანდარტებისა და მეტროლოგიის ეროვნული სააგენტო თბილისი

სსტ ენ ისო 3741:2010/2019

საინფორმაციო მონაცემები

- 1 **შემუშავებულია** საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს სტანდარტების დეპარტამენტის მიერ
- 2 დამტკიცებულია და შემოღებულია სამოქმედოდ საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს 2019 წლის 6 დეკემბრის № 98 განკარგულებით
- 3 მიღებულია გარეკანის თარგმნის მეთოდით სტანდარტიზაციის ევროპული კომიტეტის სტანდარტი ენ ისო 3741:2010 "აკუსტიკა ხმის ენერგიის დონის განსაზღვრა ხმაურის წყაროების გამოყენებით სიზუსტის მეთოდი რევებერაციის საგამოცდო ოთახებისათვის (ისო 3741:2010) "

4 პირველად

5 რეგისტრირებულია საქართველოს სტანდარტების და მეტროლოგიის ეროვნული სააგენტოს რეესტრში: 2019 წლის 6 დეკემბერი №268-1.3-016194

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 3741

October 2010

ICS 17.140.01

Supersedes EN ISO 3741:2009

English Version

Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods for reverberation test rooms (ISO 3741:2010)

Acoustique - Détermination des niveaux de puissance et des niveaux d'énergie acoustiques émis par les sources de bruit à partir de la pression acoustique - Méthodes de laboratoire en salles d'essais réverbérantes (ISO 3741:2010)

Akustik - Bestimmung der Schallleistungs- und Schallenergiepegel von Geräusch- quellen aus Schalldruckmessungen - Hallraumverfahren der Genauigkeitsklasse 1 (ISO 3741:2010)

This European Standard was approved by CEN on 14 August 2010.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents	Page
Foreword	
Δnnex 7Δ	

Foreword

The text of ISO 3741:2010 has been prepared by Technical Committee ISO/TC 43 "Acoustics" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 3741:2010 by Technical Committee CEN/TC 211 "Acoustics" the secretariat of which is held by DS.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2011, and conflicting national standards shall be withdrawn at the latest by April 2011.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 3741:2009.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive.

For relationship with EU Directive, see informative Annex ZA, which is an integral part of this document.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of ISO 3741:2010 has been approved by CEN as a EN ISO 3741:2010 without any modification.

Annex ZA

(informative)

Relationship between this European Standard and the Essential Requirements of EU Directive 2006/42/EC

This European Standard has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association to provide one means of conforming to Essential Requirements of the New Approach Directive 2006/42/EC on machinery.

Once this standard is cited in the Official Journal of the European Communities under that Directive and has been implemented as a national standard in at least one Member State, compliance with the normative clauses of this standard confers, within the limits of the scope of this standard, a presumption of conformity with the relevant Essential Requirements of that Directive and associated EFTA regulations.

 $\label{eq:warning} \textbf{WARNING --} \textbf{Other requirements and other EU Directives may be applicable to the products falling within the scope of this standard.}$

INTERNATIONAL STANDARD

ISO 3741

Fourth edition 2010-10-01

Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Precision methods for reverberation test rooms

Acoustique — Détermination des niveaux de puissance et des niveaux d'énergie acoustiques émis par les sources de bruit à partir de la pression acoustique — Méthodes de laboratoire en salles d'essais réverbérantes

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page Forewordiv Introduction......v 1 Scope......1 2 Normative references 2 3 Reference meteorological conditions6 4 5 Reverberation test room6 Instrumentation and measurement equipment10 6 7 Definition, location, installation, and operation of noise source under test......10 8 Measurements in the reverberation test room12 9 Determination of sound power levels and sound energy levels19 10 11 12 Test report.......31 Annex B (informative) Guidelines for the design of rotating diffusing vanes34 Annex C (normative) Reverberation test room qualification procedure for the measurement of broad-band sound35 Annex D (normative) Reverberation test room qualification procedure for the measurement of discrete-frequency components......37 Annex E (informative) Extension of frequency range to frequencies below 100 Hz......42 Annex F (normative) Calculation of octave band sound power levels and sound energy levels, Aweighted sound power levels and A-weighted sound energy levels from one-third-octave band levels45 Annex G (informative) Guidelines on the development of information on measurement uncertainty48 Bibliography......60

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 3741 was prepared by Technical Committee ISO/TC 43, Acoustics, Subcommittee SC 1, Noise.

This fourth edition cancels and replaces the third edition (ISO 3741:1999), which has been technically revised. It also incorporates the Technical Corrigendum ISO 3741:1999/Cor.1:2001.

Introduction

This International Standard is one of the series ISO 3740^[2] to ISO 3747^[8], which specify various methods for determining the sound power levels and sound energy levels of noise sources including machinery, equipment and their sub-assemblies. The selection of one of the methods from the series for use in a particular application depends on the purpose of the test to determine the sound power level or sound energy level and on the facilities available. General guidelines to assist in the selection are provided in ISO 3740^[2]. ISO 3740^[2] to ISO 3747^[8] give only general principles regarding the operating and mounting conditions of the machinery or equipment for the purposes of the test. It is important that test codes be established for individual kinds of noise source, in order to give detailed requirements for mounting, loading, and operating conditions under which the sound power levels or sound energy levels are to be obtained.

The methods given in this International Standard require the source under test to be mounted in a reverberation test room having specified acoustical characteristics. The methods are then based on the premise that the sound power or sound energy of the source under test is directly proportional to the mean-square sound pressure averaged in space and time, and otherwise depends only on the acoustical and geometric properties of the room and on the physical constants of air.

For a source emitting sound in narrow bands of frequency or at discrete frequencies, a precise determination of the radiated sound power level or sound energy level in a reverberation test room requires greater effort than for a source emitting sound more evenly over a wide range of frequencies, because:

- a) the space- and time-averaged sound pressure along a short microphone path, or as determined with an array of a small number of microphones, is not always a good estimate of the space- or time-averaged mean-square pressure throughout the room;
- b) the sound power or sound energy radiated by the source is more strongly influenced by the normal modes of the room and by the position of the source within the room.

The increased measurement effort in the case of a source emitting narrow bands of sound or discrete tones consists of either the optimization and qualification of the test room or the use of a greater number of source locations and microphone positions (or increased path length for a moving microphone). The addition of low-frequency absorbers or the installation of rotating diffusers in the test room can help to reduce the measurement effort.

The methods specified in this International Standard permit the determination of the sound power level and the sound energy level in one-third-octave frequency bands, from which octave band data, A-weighted frequency data, and total unweighted sound can be computed.

This International Standard describes methods of accuracy grade 1 (precision grade) as defined in ISO 12001. The resulting sound power levels and sound energy levels include corrections to allow for any differences that might exist between the meteorological conditions under which the tests are conducted and reference meteorological conditions. For applications in reverberant environments where reduced accuracy is acceptable, reference can be made to ISO 3743-1^[3], ISO 3743-2^[4] or ISO 3747^[8].